18201588123

热门搜索:

北京金业顺达科技有限公司主营:APCUPS电源,圣阳蓄电池,科士达UPS电源,UPS蓄电池,山特UPS电源,艾默生ups电源,松下蓄电池,理士蓄电池,汤浅蓄电池,艾默生精密空调,精密空调,直流屏蓄电池,模块化机房,一体化机房等,全国统一热线电话:18201588123。北京金业顺达科技有限公司凭借着高质量的产品,良好的信誉,优质的服务,产品畅销全国近三十多个省、市、自治区。

    承德德国阳光蓄电池代理商

    更新时间:2024-06-16   浏览数:154
    所属行业:仪器仪表 电子元器件 电池/蓄电池
    发货地址:北京市海淀区  
    产品数量:9999.00只
    价格:面议

    德国阳光蓄电池组一般都采用串联方式工作,工作电流与单体电池是一样的,检测比较轻易,而端电压的检测则比较麻烦。若只检测电池组的端电压,方法很简单,只需在电池组的两端接上检测电路即可,但这样做是不行的,由于固然可以得到总的工作电压,但无法判定具体单体电池的端电压,而只要有一块电池出题目就会影响整组电池的正常工作和性能;另外,对检测电路精度要求高。一个单体阳光电池端电压的正常工作范围比较小,比如12V铅酸电池的终止电压在10V左右,电压变化范围在2~3V之间,检测电路只要10%的精度即可检测出1V的变化量。若24块12V铅酸电池串联,额定电压是288V,放电终止电压是240V,电压的正常变化范围是48V,假如一块电池的端电压降至9V,那么反映在总电压上为285V,只变化了大约1%。可见,检测电路的精度至少要达到1%以上才能检测出几伏电压的变化。而整组电池检测很难发现单体电池的缓慢变化,包括单体电池本身的老化和因单体电池一致性题目而带来的积累效应。整组检测无法检测电池及电池组实际容量,无法筛选其中已老化的电池。

    实用的方法是检测每一个单体德国阳光电池。但对于串联形成的电池组,要自动检测每个单体电池的端电压所碰到的主要题目是丈量参考点的选择以及检测电路与被检测电池组的电隔离题目。电位参考点的选择不仅如上所述影响丈量精度,还对丈量电路的丈量范围提出了很高的要求。而被检测电池组与检测电路的隔离不仅涉及到系统的安全还影响检测电路的复杂度和可实现性。目前采用的主要是分布检测和集中检测两种方法。

    德国阳光蓄电池充电时,应在外接一直流电源(充电极或整流器),使正、负极板在放电后天生的物质恢复成原来的活性物质,并把外界的电能转变为化学能储存起来。

    在正极板上,在外界电流的作用下,硫酸铅被离解为二价铅离子(Pb 2)和硫酸根负离子(SO4-2)由于外电源不断从正极吸取电子,则正极板四周游离的二价铅离子(Pb 2)不断放出两个电子来补充,变成四价铅离子(Pb 4),并与水继续反应,良好在正极较板上天生二氧化铅(PbO2)。

    德国阳光电池在负极板上,在外界电流的作用下,硫酸铅被离解为二价铅离子(Pb 2)和硫酸根负离子(SO4 ̄2),由于负极不断从外电源获得电子,则负极板四周游离的二价铅离子(Pb 2)被中和为铅(Pb),并以绒状铅附在负极板上。

    电解液中,正极不断产生游离的氢离子(H )和硫酸根离子(SO4 ̄2),负极不断产生硫酸根离子(SO4 ̄2),在电场的作用下,氢离子向负极移动,硫酸根离子向正极移动,形成电流。

    充电后期,在外电流的作用下,溶液中还会发生水的电解反应。

    化学反应式为:

    正极物质电解液负极物质正极天生物电解液天生物负极天生物

    PbSO4 2H2O PbSO4→PbO2 2H2SO4 Pb

    阳光电池硫酸铅水硫酸铅氧化铅硫酸铅

    德国阳光蓄电池电解液密度和颜色异常

    阳光蓄电池在充放电过程中,电解液密度应该在1.070-1.290g/cm3之间变化,充电时电解液密度升高,放电时电解液密度降低。电解液密度太高,轻易造成较板硫酸盐化和加速板栅腐蚀,密度太低,放电容量受到影响。

    电池使用后,电解液在没有损失的情况下密度偏低,在充电中电解液密度上升少或不变,说明较板有硫酸盐化现象,需要进行消除硫酸盐化的处理。

    阳光电池充好电以后,在搁置期间,密度下降大,说明电池自放电严重,电解液中杂质较多应更换电解液。

    电解液颜色、气味不正常,并有浑浊沉淀等现象,可能由于电解液不纯,电池内落进尘土或其他杂质,活性物质脱落严重造成的,这种情况需要换电解液,并冲洗德国阳光电池内部。同时应留意电池充放电流不应过大,充电时电解液温度不应过高,防止活性物质进一步脱落。


    德国阳光电池在运行中,温度升高,充放电频繁,电解液中水分消耗大,因此,要定期给予补充纯水,弥补水耗。驾驶职员要通过检查蓄电池液面,确定是否补充水。普通蓄电池每月之内应补水一次,其他各型蓄电池要视耗水情况,定期给予补充纯水。对暂不使用的电池,可延缓数月给予补水。凡给蓄电池补水后,需作必要的补充电。假如有的蓄电池出现液面下降较快,补水频繁,要检查车上的调节器限额电压调的是否过高。过高会出现过充电,水分消耗大,蒸发快,通过调整限额电压解决。如有个别德国阳光蓄电池下降快,要检查是否产生微短路。此外,还要看电池槽有无裂缝,电解液是否渗漏,要按实情判定后再行处理。

    蓄电池正常运行,只能补水,切不可加电解液,更不能加浓硫酸!假如蓄电池倾倒,损失了原有电解液时,方可补充电解液。再按原电解液密度予以补充。有时车辆发动不起来,以为存电不足,向蓄电池内加电解液,结果会适得其反,缩短德国阳光蓄电池使用寿命。在使用中,无论是充电,还是放电,电解液硫酸都是在内部消耗和再生;硫酸逸出量较少。电解液面下降只是水分减少,只需补充纯水就行了。假如蓄电池存电不足,发动不起车来,应卸下蓄电池进行检查和修理。

    检查阳光蓄电池液面高度的方法是用一根内径3-5mm有刻度的下扁管子插单格电池内探测,起动蓄电池液面高度规定是高出防护板10-15mm。也可用清洁的竹木细棍探测,不要用金属棍探测。

    德国阳光蓄电池组容量检测,一般采用核对性放电法。这种方法是将运行中的蓄电池退出运行,静置24小时后,用电阻对蓄电池组进行放电,放电电流控制在0.1C。每小时对整组电压和单只蓄电池电压进行记录,到规定时间内蓄电池电压在额定终止电压之上为合格,在额定终止电压之下为分歧格。以上核容方法时间长,在放电过程中假如发现某只电池电压分歧格,需停止放电进行退出处理,影响了核容的正确性。

    经过总结多年的工作经验以及查阅国内外科技资料,我们发现阳光电池的内电阻能反映出蓄电池的容量。因而可以通过丈量德国阳光蓄电池的内阻数据,分析出蓄电池容量是否合乎要求,这种检测方法很简单,不需要将电池退出运行。这种方法具有简单快捷、安全可靠的特点,因而可以用阳光蓄电池容量检测仪核容方法取代电阻放电核容方法。

    德国阳光蓄电池在存放过程中,会或多或少地产生自行放电现象。正常的德国阳光蓄电池,每存放1天,电能容量约损失1%~2%,即一个充足了电的蓄电池,贮存1个月,电能容量大约损失一半。 

    一、自行放电原因

    1. 德国阳光蓄电池外部有搭铁或短路。当蓄电池引出导线与机体搭铁,或蓄电池壳体上有扳手、铁丝等导体将正负极连通,将会产生剧烈自行放电,很快将电能放完。另外,当蓄电池外壳、顶盖上有溅漏的电解液时,也可将正负极接线柱连通而放电。

    2. 德国阳光蓄电极隔板腐蚀穿孔、损坏,或正、负极板下的沉积物过多,这时正、负极板便直接连通而短路,引起蓄电池内部自行放电。

    3. 电解液不纯,含有杂质,或添加的不是纯净水,这时电解液中的杂质随电解液的流动附着于较板上,各杂质之间形成一定的电位差,便会在蓄电池内部形成许多自成通路的微小电池,使德国阳光蓄电池常处于短路状态。试验表明,电解液中若含有1%的铁,蓄电池充足电后会在24小时之内将电能全部放完。

    4. 阳光蓄电池较板本身不纯,含杂质较多,也会形成许多微小电池而自行放电。

    5. 德国阳光蓄电池存放过久,电解液中的水与硫酸,因比重不同而分层,使电解液密度上小下大,形成电位差而自行放电。

    二、预防措施

    1. 加强保养,保持德国阳光蓄电池上盖清洁。

    2. 保证电解液有较高的纯度,在配制电解液、添加蒸馏水时,都应严防杂质进入。

    3. 蓄电池在存放过程中应经常充电,使电解液密度保持均匀,并使液面不致下降。

    4. 冲洗阳光蓄电池外表时应预防污水从加液口盖或通气孔处进入蓄电池内部。

    5. 隔板、较板损坏时应及时修复或更换。

    6. 更换电解液时,一定要将阳光电池内的残液清除干净。

    德国阳光蓄电池容量过早的损失(PCL)的修复方法

    (一)容量过早的损失的特征:

    当低锑或铅钙为板栅合金时,在德国阳光蓄电池使用初期(大约20个循环)出现容量忽然下降的现象,使电池失效。 差未几每一个循环电池容量会下降5%,容量下降的速度比较快和早。

    前几年,铅钙合金系列的阳光电池经常莫名其妙的出现几只电池容量下降。分析正极板没有软化,但是就是正极板容量较低。

    (二)对产生这个现象的原因找到的解决方法:

    1、自己正极板锡的含量。对于深循环的电池基本上采用1.5%~2%的锡的含量。

    2、进步装配压力。

    3、电解液酸的含量不宜过高。

    (三)在使用中留意:

    1、避免起始充电电流连续过低;

    2、减少深度放电;

    3、避免过充电太多;

    4、不要通过过高的活性物质利用率来进步电池容量。

    (四)对产生早期容量损失的电池的恢复。

    首先是要起始充电电流增加到0.3C~0.5C,然后采用小电流补足充电;

    其次布满电的阳光蓄电池较好搁置在40℃~60℃条件下贮存; 以小于0.05C的小电放逐电到0V。电池电压达到标称电压一半以后的放电会很慢。 这样反复几次,电池的容量还可以恢复。

    (五)留意事项:

    一定要鉴别电池是否是在前20个循环发生。假如对于中后期发生容量下降的电池,采用这个方法只能够破坏电池的正极板,而导致正极板软化。

    铅钙合金系列的电池经常莫名其妙的出现几只电池容量下降主要原因是电池失衡引起的, 铅钙合金系列的电池的充足电压较高,一般12V的电池充电电压大于16V。当充电机的电压过低时,就易引起电池失衡。现象是这样发生的,当一组电瓶在装在一起用时,电瓶的每格自放电不可能尽对相等,自放电大一点点的电瓶,每次用恒压充电机都不能完全充足电,未充足电的格未出现析气反应,较板接触电解液的相对面积就大,自放电就大。而自放电小的格,每次都能充足电,当充足电后再过充一点电时,即出现析气反应,天生气体,较板接触电解液面相对减小,自放电就减小,同时充电电压升高,关断充电机。结果自放电小,电压高的格自放电越来越小,每次都能充足电,而自放电大的格自放电越来越大,每次都不能充足电,而且电量越用越小,长期不充足就会硫化而失效. 题目的根源就是不能使用恒压充电机,采用恒压充电机,恒压值过低就会出现以上现象,恒压值过高就会使电池热失控, 较好的办法是采用多种电流,多种电压的多段式充电机.而且充电终了时要有一个电压较高而电流较小的小电流长充来平衡电池电量.

    随着我国通讯、电力、UPS等行业的迅猛发展,德国阳光蓄电池的用量也在快速增加。就目前我们的蓄电池使用条件,经常会发生一些意想不到的状况发生,比如看似正常的蓄电池放电时却放不出电来。这种状况的发生主要原因在于蓄电池的运行状态没有得到有效的监测,从而导致蓄电池组中某一块或多块蓄电池发生故障而没有及时的分拣出来,进而导致整个蓄电池组不能正常放电。

    蓄电池作为安全不中断供电的最后一道**措施,同时也是不中断供电系统里面较不安全的因素。从系统理论我们知道,系统的安全程度取决于系统中较不安全的因素,也就是我们经常引用的“木桶理论”。

    针对阳光蓄电池的运行机理和失效模式,国内已经有相关的标准出台,在直流供电的场合安装对蓄电池监测的必要装置,比如电压巡检仪等。但是根据后备蓄电池的工作条件,有可能长期不放电,在两次定期核对性放电测试期间,同样有可能失效,而阳光电池的端电压是完全正常的。

    要使德国阳光蓄电池系统具有较高的可靠性,首先要正确地选择蓄电池,UPS 与通讯用蓄电池在设计上就存在不同:有些蓄电池具有较好的循环特性;有些蓄电池适宜启动;有些蓄电池适宜低温环境;有些蓄电池适宜小电流放电等等。在挑选蓄电池时,了解各种蓄电池在工艺间上和使用上的差异是非常必要的,充分了解蓄电池的电性能和用户本身对产品性能的需求。

      用户对产品的需求。例如后备电源系统容量需求、使用的频率、使用的环境、主要用途、使用寿命、可靠性要求、瞬间放电率、整流器的规格和其他蓄电池相关性能的要求。

    胶体蓄电池的失效是很多因素综合的结果,既决定于较板的内在因素,诸如活性物质的组成。晶型、孔隙率、较板尺寸、板栅材料和结构等,也取决于一系列外在因素,如放电电流密度、电解液浓度和温度、放电深度、维护状况和贮存时间等。这里先容主要的外部因素。

    1、放电深度

    放电深度即使用过程中放电到何程度开始停止。100%深度指放出全部容量。德国阳光蓄电池寿命受放电深度影响很大。设计考虑的重点就是深循环使用、浅循环使用还是浮充使用。若把浅循环使用的电池用于深循环使用时,则铅酸蓄电池会很快失效。

    由于正极活性物质二氧化铅本身的互相结合不牢,放电时天生硫酸铅,充电时又恢复为二氧化铅,硫酸铅的摩尔体积比氧化铅大,则放电时活性物质体积膨胀。若一摩尔氧化铅转化为一摩尔硫酸铅,体积增加95%。这样反复收缩和膨胀,就使二氧化铅粒子之间的相互结合逐渐松弛,易于脱落。若一摩尔二氧化铅的活性物质只有20%放电,则收缩、膨胀的程度就大大降低,结协力破坏变缓慢,因此,放电深度越深,其循环寿命越短。

    2、过充电程度

    过充电时有大量气体析出,这时正极板活性物质遭受气体的冲击,这种冲击会促进活性物质脱落;此外,正极板栅合金也遭受严重的阳极氧化而腐蚀,所以电池过充电时会使应用期限缩短。

    3、温度的影响

    阳光蓄电池寿命随温度升高而延长。在10℃~35℃间,每升高1℃,大约增加5~6个循环,在35℃~45℃之间,每升高1℃可延**命25个循环以上;**50℃则因负极硫化容量损失而降低了寿命。

    电池寿命在一定温度范围内随温度升高而增加,是由于容量随温度升高而增加。假如放电容量不变,则在温度升高时其放电深度降低,固寿命延长。

    4、硫酸浓度的影响

    酸密度的增加,虽对正极板容量有利,但电池的自放电增加,板栅的腐蚀也加速,也促使二氧化铅的疏松脱落,随着蓄电池中使用酸密度的增加,循环寿命下降。

    5、放电电流密度的影响

    随着放电电流密度增加,电池的寿命降低,由于在大电流密度和高酸浓度条件下,促使正极二氧化铅疏松脱落。

    失效模式还有一种就是失水。对于开口电池来说,失水属于正常维修,对于密封阳光电池来说,在严格的控制之下不应该出现。所以,没有把失水列进失效模式。 密封电池失水的题目,集中在电动自行车方面。是由于充电的恒压值过高。

    用户必须按照正确的程序验收和储存德国阳光蓄电池,以确保安装和使用时的质量。以下是三个较重要的步骤: 

      (1)损坏检查:在蓄电池交货后,要立即进行检查,以便用户能迅速掌握损坏或部件缺失的情况。因为如果反映问题的时间太迟,不仅会加重损失,而且向厂商或供货公司索赔也会很困难。

      (2)在完成上述检查以后,才可进行安装。完成安装后,进行充电,充满电后再浮充72个小时,然后作完整容量测试。如果通过容量测试,蓄电池验收才算完毕。

      (3)验收完毕后,德国阳光电池必须再充满电,浮充72个小时后,测其内阻作为以后判别其性能的基值。如果内阻值都在平均值的±5%,则视为阻值匹配,**过平均值5%的蓄电池较好要求供应商更换,因为内阻值相差太多的蓄电池组寿命会受到影响。

      储存处应凉爽干燥,高温和较快的自放电率会使蓄电池的内耗增加。 

      如果必须充电,如果阳光电池的储存时间已**过六个月,用户还不对它们进行升压充电,那么多数的生产商所做的保证都将无法实现。如果阳光蓄电池的储存在高温92F°环境中,这个时间将变为三个月。要使德国阳光蓄电池系统具有较高的可靠性,首先要正确地选择蓄电池,UPS 与通讯用蓄电池在设计上就存在不同:有些蓄电池具有较好的循环特性;有些蓄电池适宜启动;有些蓄电池适宜低温环境;有些蓄电池适宜小电流放电等等。在挑选蓄电池时,了解各种蓄电池在工艺间上和使用上的差异是非常必要的,充分了解蓄电池的电性能和用户本身对产品性能的需求。

      用户对产品的需求。例如后备电源系统容量需求、使用的频率、使用的环境、主要用途、使用寿命、可靠性要求、瞬间放电率、整流器的规格和其他蓄电池相关性能的要求。

      供应商的产品承诺。产品设计参数

    (蓄电池的型号、外观尺寸、额定容量、额定电压、重量、重量比能量、体积比能量、设计寿命、正负极板片数、正负极板厚度比、电解液密度、较板的类型、板栅的材料等)、产品电性能参数、产品的实际使用寿命、安装使用环境、不同型号的性能和价格、不同种类的产品保修期等。

      以全停电状态时的放电容量计算,选择合适的电池型号:

      Cc= Kk·Cs /Kc  

      Kk——容量储备系数,取1.25。

      Kc——容量换算系数,对应于放电终止电压为1.8V,查设计手册蓄电池放电容量与放电时间的关系曲线。

      Cc——事故全停状态下,长时间放电容量。

      蓄电池规格在IEEE Std.485 中有相应的说明,用户在确定了系统的循环寿命后,便可以比较容易地选定蓄电池的规格。在选择适合使用的蓄电池的过程中,还要考虑下面的几个因素: 

      Kt——温度修正因素,使德国阳光蓄电池能在预期的较低温度环境中正常工作。 

      Kd——设计余量因素,使阳光电池可以对额外增加的负载进行补偿。 

    Ka——老化因素,使德国阳光电池能够满足它的使用寿命。 

      供应商的产品承诺。产品设计参数

    (蓄电池的型号、外观尺寸、额定容量、额定电压、重量、重量比能量、体积比能量、设计寿命、正负极板片数、正负极板厚度比、电解液密度、较板的类型、板栅的材料等)、产品电性能参数、产品的实际使用寿命、安装使用环境、不同型号的性能和价格、不同种类的产品保修期等。

      以全停电状态时的放电容量计算,选择合适的电池型号:

      Cc= Kk·Cs /Kc  

      Kk——容量储备系数,取1.25。

      Kc——容量换算系数,对应于放电终止电压为1.8V,查设计手册蓄电池放电容量与放电时间的关系曲线。

      Cc——事故全停状态下,长时间放电容量。

      蓄电池规格在IEEE Std.485 中有相应的说明,用户在确定了系统的循环寿命后,便可以比较容易地选定蓄电池的规格。在选择适合使用的蓄电池的过程中,还要考虑下面的几个因素: 

      Kt——温度修正因素,使德国阳光蓄电池能在预期的较低温度环境中正常工作。 

      Kd——设计余量因素,使阳光电池可以对额外增加的负载进行补偿。 

    Ka——老化因素,使德国阳光电池能够满足它的使用寿命。 

    在**有5家大型的铅熔炼厂,3个二级熔炼厂。由于回收再利用废旧阳光电池的技术很复杂,市**自己回收电池。在初始阶段,废旧德国阳光蓄电池的回收和再利用同时进行,并且与原生铅矿石国际市场同步。然而,废旧电池的回收工作一度停滞,引起了人们对非法处理的忧虑,导致1994年回收率下跌到63%。

        为了提高回收率,从1994年10月起,国内电池生产厂商采用了电池收回计划。这种回收再利用系统是建立在每一位股东自愿努力的基础上。零售商家,汽车销售商和加油站免费从消费者那里回收废旧电池。电池遵循与其分布路线相反的方向,并且由回收公司分解。像经过拆卸蓄电池获得的电极板这样的生铅,可以卖给熔炼厂。经过熔炼,国内电池生产厂商可以根据生产规模从冶炼厂那里购买再生铅。而电池的塑料包装可以卖掉或者作为废料处理掉。废酸可以被中和或者作放电处理。

        注:铅残渣废料是未加工的铅,如通过分解电池所得的电极板。

        当前系统机制存的几个问题

    然而,进口德国阳光电池的数量增加使得当前的系统难以维继。进口电池的销售比率从1994年的百分之八点三,增长到2003年的百分之十三点二。所以,在回收再利用过程中越来越多的电池不安全。

    德国阳光蓄电池的储存性能是衡量电池综合性能稳定程度的一个重要参数。电池经过一定时间储存后,允许电池的容量及内阻有一定程度的变化。经过了一段时间的储存,可以让内部各成分的电化学性能稳定下来,可以了解该电池的自放电性能的大小,以便保证阳光电池的品质。


    http://kmty.cn.b2b168.com