热门搜索:
西恩迪蓄电池组的容量测试分析
目前西恩迪蓄电池组容量测试主要有三种方法:(1)离线式放电,(2)在线“评估式”放电,(3)蓄电池组全在线充放电
一、离线式放电:
该放电方式是将电池组从直流供电系统脱离出来,外接假负载,进行放电试验,供电系统中只存在一组电池备用,存在危险,但放电过程中与系统没有联系。
缺点是:
1、放电后被测蓄电池的电压较低,如果直接恢复并联时,会产生火花和冲击电流,使并联恢复困难,存在较大的安全隐患。为减少火花和冲击电流可将被测电池组静置10分钟,同时降低开关电源输出电压与被测电池电压基本相同后,恢复并联。
2、如果整流器系统大,充电限流点设置不合理,巨大冲击电流可能造成熔丝或连接条熔断,同时对蓄电池本身将有非常大的损害。
3、既要拆卸电池组正极,又要拆卸电池组负极,拆卸电池组负极时如果操作不当,将引起短路事故,放电需要长达16个小时,整个过程需要专业维护人员时刻看守,工作强度大,劳动效率低。
4、同时,整个过程中机房内一直存在一个高热源,始终是一个安全隐患因数。例如一个系统2组3000AH电池组,其做一次80%容量(10小时率8个小时)被测电池组电能全部通过假负载散热消耗,浪费能源,影响机房设备的运行环境,需要空调降温,进一步浪费能源,而且还要对电池充电约1.2倍的放电容量,不利于节能降耗。试验消耗的电能大约是:
(1)放电耗能:(48VX300AX8小时)/1000=115.2度X2组=230.4度
(2)充电耗能:230.4X1.2倍=276.48度
(3)以上充放一次电,理论上共浪费电能506.88度,如果考虑空调制冷,耗电还会要多。所以,如果全国的电池组都按规定每年做30~40%核对性放电试验,每三年做一次容量试验,浪费的电能是非常可观的。
另外,在一些只配置一组电池组的模块局、接入网点,是无法
实施这种测试,因此目前基本不采用该种放电试验方法。
二、在线“评估式”放电:
在《中国联通通信网络运行维护规程(试行)-动力环境分册》中详细介绍了:降压放电法—蓄电池核对性放电试验。顾名思义,一是降压,二是只能核对性放电。具体做法是:调整整流器输出电压至保护电压(如47V),让并联的蓄电池组对实际通信设备负荷短时间供电来进行放电试验。
在线“评估式”放电特点是:
1、并联的电池组全部投入对实际通信网络负荷放电,系统无满容量电池组备用,系统安全性降低。因为,电池组剩余多少容量要以实际能放出的容量为准,不取决于电池组的电压,实际中可能是电池组电压还有一定冗余,但是电池组的剩余容量已经没有了。
2、调整整流器输出电压至保护电压(如47V)短时间放电,然后估算电池容量的方法都属于在线评估式放电的范畴,放电深度有限,达不到放电试验目的;即:活化保持整组电池活性及寻找落后电池。原因是:在实践中经常发现某些单体电池电压在放电前期表现稳定,但到中后期电压可能快速下降。
3、易出现每组电池放电电流不平衡现象:有质量问题的电池组,内阻大,分担电流小,正常的电池组,内阻小,分担电流大,尤其是并联3组电池组或以上的大系统,该问题更加**。
4、该方法适用于一些配置一组电池组的模块局、接入网点的电池组核对性放电试验,掌握电池的基本情况。
三、蓄电池组全在线充放电方式:
近几年全在线充放电方式自提出以来,使用越来越多,全在线充放电方式。
全在线充放电方式有如下特点:
1、放电过程,不必将电池组脱离系统,不必调整整流器的输出电压。
2、放电试验时基本可以实现无人职守,大大提高工作效率。
3、放电过程除放电设备风扇耗能外,基本没有电能浪费,可以带来节能环保效益。
4、既能实现放电又能实现充电,且全部在线进行,较大限度弱化市电中断带来的危险,同时智能在线容量测试仪可设定充电电流,不会对电池及系统造成冲击,提高放电试验安全系数。
5、在被测电池组放电过程中智能在线容量测试仪时时进行升压补偿被测电池组电压变化,使两个支路始终保持等电位,但是被测电池组所在支路的电压始终具有略高趋势,以保证被测电池组可以持续进行放电,而在此过程中另一组电池始终处于浮充满容量状态。
6、全在线充放电方式可简单地实现对UPS电池组容量测试工作。在该方法之前,对UPS电池组只能或只敢短时间的核对性放电试验,或是容量试验时,还要请厂家工程师到现场,操作很麻烦,而且危险性很大。
7、被测电池组放电充电过程,始终保持在线状态,在此过程中,一旦发生市电中断情况,被测电池组和平常一样,可以立即投入供电工作,另一组备用电池组还可以满容量状态投入供电工作。这就较大限度地延长了电池组的供电时间,较大限度地降低因放电试验而引起的通信事故的概率。
大力神蓄电池的开路测试电压法
大力神蓄电池也会发生其它类型的现象,包括单格电池内连接不良、导体腐蚀、活性物质从阳极板脱落或阴阳极板之间发生短路。大力神蓄电池有多个组件组成,且可能因储存条件和误用而老化。比如,一般在正常使用数年之后,正极板铅合金板栅和活性物质会逐渐老化,凝胶或吸附式电解质可能发生一定程度的干化。 充电不当和工作温度升高均会大幅加速组件老化。
这些测试并不能确定或确保大力神蓄电池的实际容量,但是可以提示是否有必要进行大力神蓄电池更换或执行完整的容量性能测试。
不同形式的完整性测试可供使用:所有这些情况都会影响大力神蓄电池的性能(蓄电池容量),而且在某些情况下,可能导致大力神蓄电池不能使用,甚至出现更加危险的情况。可以对大力神蓄电池进行若干项便捷且成本低的测试,确保大力神蓄电池的完整性和可用性。
开路电压测试
大力神电池开路电压约等于电解质的比重加0.84。单格大力神电池完成充电24小时以上,其开路电压与作为电池荷电状态的电解质的比重密切相关。比如,电解质比重为1.300的电池充分充电后,其开路电压为2.14 VDC(1.300+0.84) 比重为1.280、充分荷电的大力神电池的开路电压为2.12 VDC(1.280+0.84)。
储存过程中,电解质中的硫酸被消耗而且由于自放电而在较板上形成硫酸铅,所以电解质的比重会逐渐降低。发生这种情况后,开路电压将相应降低。结果,开路大力神蓄电池的开路电压就成了荷电状态的指标。
比如,大力神蓄电池一般都拥有充分荷电的比重为1.300的电解质和2.14 V/C开路电压(3单格和6单格蓄电池的开路电压分别为6.42和12.84 VDC)。大力神蓄电池继续储存,则开路电压将继续下降。凝胶电解质大力神蓄电池一般都有充分荷电的、比重为1.280的电解质,相应的开路电压为2.12 V/C(3单格和6单格大力神蓄电池的开路电压分别为6.36和12.72 VDC)。持续储存过程中,其开路电压会相应下降。
对于储存或未连接至充电器的大力神蓄电池,若由于自放电而失去20%的容量,则需要对其进行更新充电。 此举可确保大力神蓄电池安装后动力强劲、可用性强。 如果大力神蓄电池自放电至较低的开路电压,而且未进行更新充电,那么这些大力神蓄电池最后可能变为短路电池或者面临不可恢复的容量丧失。
3单格和6单格大力神蓄电池运行时的开路电压分别低于5.7或11.5 VDC,那么则视为短路电池。全新的3单格和6单格蓄电池,若开路电压分别低于6和12伏特,也被认定为含有一个或多个短路电池。切勿对开路电压较低的大力神蓄电池进行充电或负载测试。若大力神蓄电池内电流流动时发生短路,它产生的电火花可能点燃电池内的常态气体。
http://kmty.cn.b2b168.com